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ABSTRACT

Values of a have been obtained from the rate equation

da _A .\ —&/RT
dT—B(l a)'e

by solving it numerically using a fourth order Runge—Kutta method for several values of » in
the range 0-2. In each case, the solutions have been analyzed by the iterative method of
Reich and Stivala. Calculated values of n and E were found to be virtually identical to those
used in the differential equation.

INTRODUCTION

A great deal of attention has been focussed on the evaluation and
approximation of the temperature integral

T
I=[" e &/RTQT (1)
0

where E is the activation energy, T is the temperature (K) and R is the molar
gas constant [1-8]. This attention arises from the fact that the usual
nonisothermal rate equation

da A4

E?-:—E(l —a)" e E/RT (2)

where « is the fraction reacted, n is the reaction order, and B is the heating
rate, cannot be solved exactly. Thus, the usual procedure is to represent the
temperature integral as a truncated series [1,2,6]. Reich and Stivala obtained
the equation '
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as a two point form of such an approximate equation [1,9]. Representing the
left-hand side as f(«. 7, n) and the right-hand side as f(1/7). a linear
relationship having an intercept of zero exists when the correct value of »n is
used. An iterative procedure was devised to determine the value of n giving
the intercept closest to zero [10]. The slope of the line (E/R) is used to
calculate E. One problem of using calculated test data is that the values of a
are calculated using the approximate equation from which eqn. (3) is derived
[10]. Two alternatives exist here. First. approximation of the temperature
integral can be made to any desired accuracy [6.8] and test data can be
generated to see if the series approximations of the temperature integral
affect the outcome of the Reich-Stivala method. Second. the differential rate
equation [eqn. (2)] can be solved by numerical methods and the results
analyzed by the Reich-Stivala method. In etther case. a valid test of the
Reich-Stivala method can be made using data that are not obtained by
means of the same equation which is used to derive the iterated function.
This paper describes the numerical solution of eqn. (2) and the analysis of
the (a, T') data by the Reich-Stivala method.

METHODS
Computational procedures

The rate equation

da A P

:‘17:—3—(1—“) (S E/RT (2)
was solved numerically for various values of 7" using the previously selected
values for £, A/B. and n. The numerical solution was carried out using a
fourth order Runge-Kutta method. A comparison of the results obtained by
this method with those obtained by several other methods has been made
[11]. In general, the fourth order Runge-Kutta method is equal or superior
to other methods in general use, especially when a large number of iterations
per integration step are used. The computations were programmed for
analysis using a Texas Instruments TI-59 programmable calculator. Two
fourth order programs were used. The first involved a program adapted from
that given by Meck [12] while the second made use of the Runge-Kutta
program in the PROM Math /Ultilities library module as a subroutine [13].

Validation of the procedures

Since eqn. (2) cannot be solved exacitly, it is not possible to compare the
resulis of a numerical solution with those obtained by analytical methods.
Therefore, the computational techniques were tested by comparing such



243

results for an equation that can be solved analytically. The equation chosen
was

dy

——=x—y+1 4
dx - (4)
which has been used to compare various numerical techniques [11]. and it
was solved subject to y = 1 at x = 0. The exact solution is

y=e Y +x (5)

Table1 presents vaiues of the exact solutions 3,(x,). the approximate
solutions as determined by a computer solution [11]. and the solutions
calculated in this work. The procedure used 10 iterations in each x, -x, .,
interval. The data shown in Tabie 1 indicate that the fourth order Runge-
Kutta method used in this work reproduced the exact solutions to nine
decimal places when the TI-59 is used. This represents greater accuracy than
the usual computer method [11] because the TI-59 computes with 13 digits
internally.

Other equations have been used with simiiar results. Clearly. the accuracy
of the computations is adequately established. This is necessary in order to
attribute any inconsistencies in the computed results to their proper source.
We have also found that certain types of computations that involve small
differences in iterated parameters can be carried out more effectively with
the TI-59 calculator than with small computers [14]. In cases such as the
present one, it is frequently necessary to use a double precision routine with
the computer to produce the same result as is obtained with the TI-59
calculator.

TABLE ]
Exact solutions of eqn. (4) and those obtained by Runge-Kutta methods *

X, Exact Computer R-K TI-59 R-K
of order four® of order four

0.1 1.0048374180 1.0048375000 1.004837418
0.2 1.0187307531 1.0187309014 1.018730753
0.3 1.0408182207 1.0408184220 1.040818221
04 1.0703200460 1.0703202889 1.070320046
0.5 1.1065306597 1.1065309334 1.106530660
0.6 1.1488116360 1,1488119344 1.148811636
0.7 1.1965853038 1.1965856187 1.196585304
0.8 1.2493289641 1.2493292897 1.249328964
0.9 1.3065696597 1.3065699912 1.306569661
1.0 1.3678794412 1.3678797744 1.367879441

2 In'each case the integration step size is 0.1 with 10 iterations per step.

* Ref. 11, p. 206.
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Reich—Stivala analysis

Implementation of the Reich-Stivala analysis of the computed (a, T)
data was carried out using the algorithm developed for use with the TI-59
programmable calculator [15].

RESULTS AND DISCUSSION

The values chosen for the kinetic parameters used in the numerical
solution of eqgn. (2) were: E=100 kJ mole™ ', A/B=3X 10" min™', R=
8.3143J mole~! deg™!, and n=0, 1/3, 1/2,2/3, 1, 4/3, 5/3, and 2. The
initial boundary conditions chosen were that « =0 at 340 K. Changing that
condition to @ = 0 at 300 K did not materially change the computed « values
or the results produced by Reich—Stivala analysis of them. The results of the
Runge—-Kutta method are shown in Table 2. Each of these sets of (a. T') data
was then subjected to the Reich-Stivala analysis. As an example, Table3

TABLE3

Results of the Reich-Stivala analysis of the numerical solutions of the rate equation for n =1,
E =100 kJ mole~ !, and 4 /8 =3 10"’ min~"'

Trial n Intercept —Slope —Corr. coeff.
0.1 1.81366 42696 0.96803
0.2 1.69407 40719 - 0.96604
0.3 1.55815 38458 0.96445
04 1.40411 35881 0.96353
0.5 1.23014 32956 0.96365
0.6 1.03450 29652 0.96537
0.7 0.81560 25041 0.96947
0.8 0.57206 21799 0.97710
0.9 0.30285 17208 0.98920
1.0 0.00729 12156 ° 0.99999
1.1 —0.31482 6638 0.90810
1.01 —0.02372 11625 0.99958
1.02 —0.05500 11089 0.99843
1.03 —0.08655 10549 0.99628
1.04 . —0.11837 10004 0.99281
1.05 —0.15045 9455 0.98756
1.06 —-0.18279 8901 0.97998
1.07 —0.21540 8342 0.96932
1.08 —0.24828 7779 0.95464
1.09 —0.28142 7210 0.93472

3 Calculated E is 101.06 kJ mole ™',
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TABLE4
A summary of results computed by the Reich-Stivala analysis of numerical solutions

n Intercept —Slope — Corr. coeff. Calculated ©
E(kJ mole™")

Actual ® Caled. ®

0 0.02 —0.00007 12055.3 0.99964 100.231
1,734 0.34 0.00498 12129.4 0.99976 100.848

1/2 0.50 0.01046 12211.1 0.99998 101.526
2,34 0.67 0.00568 12137.1 0.99982 100.912

1 1.00 0.00729 12155.5 0.99999 101.065

4/3 d 1.34 —0.00348 11981.9 0.99983 86.621
5734 1.67 —0.00374 11946.1 0.99999 99.323

2 2.00 0.00539 121124 0.99999 100.707

2 The value used in the numerical soiution of eqn. (2).

® Value giving the intercept closest to zero in the Reich—Stivala analysis.
“ Actual £ used in eqn. (2) is 100 kJ mole™".

Y Noninteger orders were input as 1+3=0.333.... etc.

shows the results as output of the Reich-Stivala analysis applied to the
coraputed solutions for n = 1.

The results shown in Table 3 indicate quite clearly that the Reich—Stivala
method identifies the correct order for this # = 1 case and that the resulting
actrvation energy (101.06 kJ mole™!) gives excellent agreement with the
value of 100 kJ mole™! used in the equation solved numerically. Table 4
provides a summary of the results obtained from the Reich-Stivala analysis
for all the values of n used. These results clearly show that the Reich-Stivala
method determines the order to within a maximum error of 0.02 and E to a
maximum error of about 1.5 kJ mole™! (1.5%) when n varies from 0 to 2.
Although they are not presented here. other cases having other values of E
and A /B were used with similar accuracy in the results.

The approximate integrated rate equation used by Reich and Stivala to
obtain their function for iteration was based on the rate law shown in eqn.
(2). While this method may not give the correct order if a rate law of a
different form is followed [16], it is easily apparent that this method gives
excellent results when the reaction does follow a rate law in the form of eqgn.
(2). In fact, in view of the uncertainties arising from sample-to-sample
variations [17], it is safe to conclude that the Reich-Stivala method will
accomplish all that the experimental data will allow if eqn. (2) represents the
form of the rate law. '
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